Classification and attractiveness evaluation of facial emotions for purposes of plastic surgery using machine-learning methods and R

eRum 2018

Lubomír Štěpánek^{1, 2} Pavel Kasal² Jan Měšťák³

¹Institute of Biophysics and Informatics ³Department of Plastic Surgery First Faculty of Medicine Charles University in Prague

²Department of Biomedical Informatics Faculty of Biomedical Engineering Czech Technical University in Prague

Introduction	Methodology	Results	Summary
000	00000	000	O
Obsah			

Lubomír Štěpánek 🐯 🚌 Classification and attractiveness evaluation of facial emotions May 15, 2018 2/15

Introduction	Methodology	Results	Summary
●00	00000	000	O
Quick introduction			

- human facial attractiveness perception is data-based and irrespective of the perceiver
- current plastic surgery deals with aesthetic indications such as an improvement of the attractiveness of a smile or other facial emotions

Introduction	Methodology	Results	Summary
○●○	00000	000	O
Quick introduction			

- total face impression is also dependent on presently expressed facial emotion
- there is no face without facial emotion at all

Introduction	Methodology	Results	Summary
000	00000	000	O
Aims of the study			

- to identify geometric features of a face associated with an increase of facial attractiveness after undergoing rhinoplasty
- to explore how accurate classification of faces into sets of facial emotions and their facial manifestations is

Introduction	Methodology	Results	Summary
	00000		
Brief methodo	low of facial attra	stiveness evaluat	ion

- profile facial image data were collected for each patient before and after rhinoplasty (about 80 images)
- images were
 - processed
 - landmarked

ь.

- analyzed
- linear regression was performed to select predictors increasing facial attractiveness after undergoing rhinoplasty

Introduction	Methodology	Results	Summary
Brief methodology	of facial emotions of	lassification	

- portrait facial image data were collected for each person just in the moment they show a facial expression according to the given incentive (about 170 images)
- images were
 - processed
 - landmarked
 - analyzed
- Bayesian naive classifiers, regression trees (CART) and neural networks were learned to allow assigning a new face image data into one of facial emotions

Introduction	Methodology	Results	Summary
000	००●००	000	O
Data of interest			

- facial attractiveness of patients' data was measured using Likert scale by a board of independent observers
- the sets of used facial emotions and other facial manifestation originate from Ekman-Friesen FACS scale, but was improved substantially

Lubomír Štěpánek

cluster of emotions	quality
contact	positive
helpfulness	positive
evocation	positive
defence	negative
aggression	negative
reaction	neutral
decision	neutral
well-being	positive
fun	positive
rejection	negative
depression	negative
fear	negative
deliberation	positive
expectation	positive

8/15

🕲 🚰 Classification and attractiveness evaluation of facial emotions May 15, 2018

Introduction	Methodology	Results	Summary
000	०००●०	000	O
Landmarking			

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

Introduction	Methodology	Results	Summary
000	0000●	000	○
Some derived meti	rics and angles		

metrics/angles	definition
nasofrontal angle	angle between landmarks 2, 3, 18 (profile)
nasolabial angle	angle between landmarks 7, 6, 17 (profile)
nasal tip	horizontal Euclidean distance between landmarks 6, 5 (profile)
nostril prominence	Euclidean distance between landmarks 15, 16 (profile)
cornea-nasion distance	horizontal Euclidean distance between landmarks 3, 4 (profile)
outer eyebrow	Euclidean distance between landmarks 21, 22 (portrait)
inner eyebrow	Euclidean distance between landmarks 25, 26 (portrait)
lower lip	Euclidean distance between landmarks 30, 33 (portrait)
mouth height	Euclidean distance between landmarks 6, 8 (profile)
angular height	Euclidean distance between landmarks 7 (or 8) and 33 (portrait)

900

10/15

Classification and attractiveness evaluation of facial emotions

Introduction	Methodology 00000		Results ●00		Summary O
Evaluat	ion of rhinoplasty effect	on faci	al attra	activenes	S
	predictor	estimate	<i>t</i> -value	<i>p</i> -value	
	intercept _{after-before}	3.832	1.696	0.043	
	nasofrontal angle _{after-before}	0.353	1.969	0.049	
	nasolabial angle _{after-before}	0.439	1.986	0.047	
	nasal tip _{after-before}	-3.178	0.234	0.068	
	nostril prominence _{after-before}	-0.145	0.128	0.266	
	cornea-nasion distance _{after-before}	-0.014	0.035	0.694	

Classification and attractiveness evaluation of facial emotions May 15, 2018

11/15

Introduction 000	Methodology 00000	Results 00●	Summary O
Predictions of the	emotional quality b	ased on the naive	
Raves classifiers (ART's and neural r	networks respectiv	

		predicted class		
		negative	neutral	positive
true class	negative	34	11	16
	neutral	16	39	8
	positive	4	10	30

		predicted class		
		negative	neutral	positive
true class	negative	35	7	15
	neutral	12	40	9
	positive	4	12	31

	predicted class			
		negative	neutral	positive
true class	negative	36	6	6
	neutral	12	54	18
	positive	3	4	32

◆□> ◆圖> ◆注> ◆注>

Classification and attractiveness evaluation of facial emotions

Introduction	Methodology	Results	Summary
000	00000	000	●
Summary			

- enlargement of both a nasolabial and nasofrontal angle within rhinoplasty were determined as statistically significant predictors increasing facial attractiveness
- neural networks manifested the highest predictive accuracy of a new face categorization into facial emotions
- geometrical shape of mouth, then eyebrows and finally eyes affect in descending order the intensity of classified emotion

Thank you for your attention!

lubomir.stepanek@lf1.cuni.cz lubomir.stepanek@fbmi.cvut.cz